材料保护
    主页 > 期刊导读 >

点击化学反应及其在材料保护领域的应用

SHI Cheng GAO Li-xin ZHANG Da-quan 2001年,Sharpless [1] [2-3] 关于叠氮化物和炔在无催化剂作用下可以进行环加成反应已有众多报道 [4] [5] [6] [1] [7] [8-9] [10] [11-12] [13] 1 点击化学在材料保护领域的应用 点击化学反应反应迅速、产物易纯化、操作简便 [13-18] 1.1 防护性材料的制备 点击化学反应具有反应位点专一、反应模块化等特点,可以简单高效地合成聚合物,所以在防腐蚀涂料领域得到了广泛的应用。Ireni等 [19] Kantheti等 [20-21] 12 [22] Sykam 等 [23] [19] [19] Vasiliu等 [24] [25] [25] 2 2 [26-30] [31] 点击化学反应因其优异特性,可以简单高效地合成聚合物,使其在聚合物性能开发方面发挥作用。此外点击化学反应与自我修复之间存在良好的相互作用,不仅可以利用点击化学反应修复材料的损伤,而且还可以利用点击反应检测损伤情况,实现材料失效的可视化 [32] 1.2 缓蚀剂合成方面的应用 在点击化学中,Cu(I)催化的叠氮基团与炔基团的反应是研究最广泛的一类点击化学反应。由于此类反应条件温和、反应迅速、产率高且绿色环保,近些年已被广泛应用于缓蚀剂合成。 González-Olvera 等 [33-34] [20] [20] [23] [23] [25] [25] [33] [33] Zhang等 [35] [36] [37] [38] [39] n n n [39] n n n [39] 三氮唑类化合物在缓蚀剂研究中具有重要作用。目前,点击化学反应在缓蚀剂方面的主要应用就是1,2,3-三唑类化合物的合成 [40] 1.3 表面修饰与改性的研究 Click化学因其简单高效的特性,为材料表面修饰提供了一种功能强大、用途广泛的工具 [13] [41] Gu等 [42] [43] [44] [45] [46] [47] [48] 2 WANG Y等人 [49-50] [46] [46] [50-51] [50-51] 为了实现高效、快速的表面修饰,研究者们研究了大量点击化学应用方法。与传统的耦合方法相比,点击化学反应方法已被证明在表面修饰与改性领域具有明显的优势,可以实现材料表面特定部位的局部修饰,具有可定量、可定位的特点,受到了众多研究者的关注,并且取得了许多重大研究成果 [51-56] 2 展望 1)点击化学反应已经从理论探索进入到实用技术开发等阶段,其反应条件十分温和,很多点击化学反应在室温下即可进行,而且产率高,操作简单便捷。众多科研成果表明,点击化学反应可以有效地改善一些传统有机合成方法的不足,并且能够广泛地应用于材料科学领域。 2)目前许多点击反应已经逐步应用于材料保护,但与有机化学反应库的庞大性相比,在材料保护领域得到应用的点击反应数量仍然很少。开拓点击化学反应的应用范围是目前急需开展的工作。开发新的点击反应的底物,无论是单体、聚合物、表面,还是生物分子,都将是至关重要的。 3)仍需对点击反应的催化剂和反应条件进行研究,以确定在何种情况下可以实现点击反应。可以预见,点击化学本身将作为一个优秀的“催化剂”,极大地促进材料科学的发展,在材料制备和材料表面修饰等方面具有广阔的应用前景。 参考文献: [1]KOLB H C, FINN M G, SHARPLESS K B. Click chemistry: Diverse chemical function from a few good reactions[J]. Angewandte chemie international edition, 2001,40(11): 2004-2021. [2]COLLMAN J P, DEVARAJ N K, CHIDSEY C E D.“Clicking” functionality onto electrode surfaces[J]. Langmuir, 2004, 20(4): 1051-1053. [3]彭奇鸣. 硫桥杯芳烃-四硫富瓦烯衍生物的合成及性质研究[D]. 郑州: 郑州大学, Qi-ming. Synthesis of thiacalixarene-tetrathiafulvalene assemblies and the study of these properties[D].Zhengzhou: Zhengzhou University, 2011. [4]LUTZ J F. Copper-free azide-alkyne cycloadditions: New insights and perspectives[J]. Angewandte chemie international edition, 2008, 47(12): 2182-2184. [5]HUISGEN R. Cheminform abstract: 1,3-dipolar cycloaddition-introduction, survey, mechanism[J]. Chem inform,1985, 16(18): 176-179. [6]邱素艳, 高森, 林振宇, 等. 点击化学最新进展[J]. 化学进展, 2011, 23(4): Su-yan, GAO Sen, LIN Zhen-yu, et al. Advances in click chemistry[J]. Progress in chemistry, 2011, 23(4):637-648. [7]ROSTOVTSEV V V, GREEN L G, FOKIN V V, et al. A stepwise huisgen cycloaddition process: Copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes[J]. Angewandte chemie international edition, 2002,114(14): 2708-2711. [8]LI N S, GOSSAI N P, NAUMANN J A, et al. Efficient synthetic approach to linear dasatinib-DNA conjugates by click chemistry[J]. Bioconjugate chemistry, 2016, 27(10):2575-2579. [9]LI D, XIE J, ZHOU W, et al. Click chemistry-mediated cyclic cleavage of metal ion-dependent DNA zymes for amplified and colorimetric detection of human serum copper (II)[J]. Analytical and bioanalytical chemistry,2017, 409(27): 1-7. [10]PUNETHA V D, RANA S, YOO H J, et al. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and grapheme[J]. Progress in polymer science, 2017, 67: 1-47. [11]LIN L, SUN H, ZHANG K, et al. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding[J]. Journal of hazardous materials, 2017, 327: 97-107. [12]ASAI H, OCHIAI H, ELOUALI S. Biopharmaceutical discovery by organic synthesis[J]. Trends in glycoscience and glycotechnology, 2017, 29(168): E63-E68. [13]XI W, SCOTT T F, KLOXIN C J, et al. Click chemistry in materials science[J]. Advanced functional materials, 2014,24(18): 2572-2590. [14]左育静. 基于巯基“点击”反应合成有机硅荧光材料及性能研究[D]. 济南: 山东大学, 2017.ZUO Yu-jing. Synthesis and properties of organosilicon luminescent materials via thiol "click" chemistry[D]. Jinan: Shandong University, 2017. [15]HOYLE C E, BOWMAN C N. Thiol-ene click chemistry[J]. Angewandte chemie international edition, 2010,49(9): 1540-1573. [16]HELMS B, MYNAR J L, HAWKER C J. Dendronized linear polymers via “click chemistry”[J]. Journal of the american chemical society, 2004, 126(46): -. [17]KILLOPS K L, CAMPOS L M, HAWKER C J. Robust,efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry[J]. Journal of the american chemical society, 2008, 130(15): 5062-5064. [18]SCHULZE B, SCHUBERT U S. Beyond click chemistrysupramolecular interactions of 1,2,3-triazoles[J]. Chemical society reviews, 2014, 43(8): 2522-2571. [19]IRENI N G, NARAYAN R, BASAK P, et al. Poly (thiourethane-urethane)-urea as anticorrosion coatings with impressive optical properties[J]. Polymer, 2016, 97: 370-379. [20]KANTHETI S, NARAYAN R, RAJU K. Development of moisture cure polyurethane-urea coatings using 1,2,3-triazole core hyperbranched polyesters[J]. Journal of coatings technology and research, 2013, 10(5): 609-619. [21]KANTHETI S, NARAYAN R, RAJU K. Click chemistry engineered hyperbranched polyurethane-urea for functional coating applications[J]. Industrial & engineering chemistry research, 2014, 53(20): 8357-8365. [22]KANTHETI S, GADDAM R R, NARAYAN R, et polyol decorated carbon nanotube by click chemistry for functional polyurethane urea hybrid composites[J]. RSC advances, 2014, 4(47): -. [23]SYKAM K, DONEMPUDI S. Novel multifunctional hybrid diallyl ether monomer via azide alkyne click reaction as crosslinking agent in protective coatings[J]. Polymer, 2015, 62: 60-69. [24]VASILIU S, KAMPE B, THEIL F, et al. Insights into the mechanism of polymer coating self-healing using raman spectroscopy[J]. Applied spectroscopy, 2014, 68(5): 541-548. [25]NEUMANN S, D?HLER D, STR?HL D, et al. Chelation-assisted CuAAC in star-shaped polymers enables fast self-healing at low temperatures[J]. Polymer chemistry,2016, 7(13): 2342-2351. [26]MICHAEL P, D?HLER D, BINDER W H. Improving autonomous self healing via combined chemical/physical principles[J]. Polymer, 2015, 69: 216-227. [27]ZHAO Y, D?HLER D, LV L P, et al. Facile phase-separation approach to encapsulate functionalized polymers in core-shell nanoparticles[J]. Macromolecular chemistry &physics, 2014, 215(2): 198-204. [28]HERBST F, D?HLER D, MICHAEL P, et al. Self-healing polymers via supramolecular forces[J]. Macromolecular rapid communications, 2013, 34(3): 203-220. [29]D?HLER D, RANA S, RUPP H, et al. Qualitative sensing of mechanical damage by a fluorogenic "click" reaction[J]. Chemical communications, 2016, 52(74): -. [30]NIA A S, RANA S, D?HLER D, et al. Nanocomposites via a direct graphene-promoted “click”-reaction[J]. Polymer, 2015, 79: 21-28. [31]YATVIN J, BROOKS K, LOCKLIN J. SuFE x click: New materials from SO x F and silyl ethers[J]. Chemistry—A european journal, 2016, 22(46): -. [32]D?HLER D, MICHAEL P, BINDER W H. CuAAC-based click chemistry in self-healing polymers [J]. Accounts of chemical research, 2017, 50(10): 2610-2620. [33]GONZáLEZ R, ESPINOZA A, NEGRóN G E, et click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: Promising acidic corrosion inhibitors for steel[J]. Molecules, 2013, 18(12):-. [34]NEGRóN G E, GONZáLEZ R, ANGELES D. Synthesis of new 1,2,3-triazole derivatives of uracil and thymine with potential inhibitory activity against acidic corrosion of steels[J]. Molecules, 2013, 18(4): 4613-4627. [35]ZHANG H L, HE X P, DENG Q, et al. Research on the structure-surface adsorptive activity relationships of triazolyl glycolipid derivatives for mild steel in HCl[J]. Carbohydrate research, 2012, 354: 32-39. [36]DENG Q, DING N N, WEI X L, et al. Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl[J]. Corrosion science, 2012, 64: 64-73. [37]DENG Q, HE X P, SHI H W, et al. Concise CuI-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction ligation remarkably enhances the corrosion inhibitive potency of natural amino acids for mild steel in HCl[J]. Industrial &engineering chemistry research, 2012, 51(21): 7160-7169. [38]ZHANG T, CAO S, QUAN H, et al. Synthesis and corrosion inhibition performance of alkyl triazole derivatives[J]. Research on chemical intermediates, 2015, 41(5):2709-2724. [39]RAMAGANTHAN B, GOPIRAMAN M, OLASUNKANMI L O, et al. Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium:experimental, quantum chemical and monte carlo simulation studies[J]. RSC advances, 2015, 5(94): -. [40]WANG Q, HAWKER C. Toward a few good reactions:Celebrating click chemistry’s first decade[J]. Chemistry—An asian journal, 2011, 6(10): 2568-2569. [41]COLLMAN J P, HOSSEINI A, EBERSPACHER T A, et al. Selective anodic desorption for assembly of different thiol monolayers on the individual electrodes of an array[J]. Langmuir, 2009, 25(11): 6517-6521. [42]GU L, XUE Q, PENG S, et al. A novel and facile strategy to inhibit corrosion: Thiol-click synthesis of polythiols and their skinning on a metal surface to form super thick protective films[J]. Polymer chemistry, 2016, 7(3): 625-632. [43]XIAO X, XIE W, YE Z. Preparation of corrosion-resisting superhydrophobic surface on aluminium substrate[J].Surface engineering, 2018, 56: 1-7. [44]HOU K, ZENG Y, ZHOU C, et al. Facile generation of robust POSS-based superhydrophobic fabrics via thiolene click chemistry[J]. Chemical engineering journal,2018, 332: 150-159. [45]CAMPOS M A, PAULUSSE J M, ZUILHOF H. Functional monolayers on oxide-free silicon surfaces via thiolene click chemistry[J]. Chemical communications, 2010,46(30): 5512-5514. [46]张昭, 陈宇, 刘姣, 等. 一种有机硅改性丙烯酸防污涂料的研究[J]. 装备环境工程, 2016, 13(4): Zhao, CHEN Yu, LIU Jiao, et al. Antifouling coating made of organic silicon modified acrylic resin[J].Equipment enviromental engineering, 2016, 13(4): 1-7. [47]LI J, LI L, DU X, et al. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (Bio)functionalization[J]. Nano letters, 2014, 15(1): 675-681. [48]MARTIN K L, NYQUIST Y, BURNETT E K, et al. Sur-face grafting of functionalized poly(thiophene)s using thiol-ene click chemistry for thin film stabilization[J]. Acs applied materials & interfaces, 2016, 8(44): -. [49]WANG Y, YU Y, ZHANG J, et al. Click-assembling triazole membrane on copper surface via one-step or two-steps and their corrosion inhibition performance[J].Applied surface science, 2018, 427: 1120-1128. [50]YU Y, WANG Y, LI J, et al. In situ click-assembling monolayers on copper surface with enhanced corrosion resistance[J]. Corrosion science, 2016, 113: 133-144. [51]LUONG N D, SINH L H, JOHNANSSON L S, et graphene by thiol-ene click chemistry[J].Chemistry—A european journal, 2015, 21(8): 3183-3186. [52]COLLINS J, XIAO Z, M?LLNER M, et al. The emergence of oxime click chemistry and its utility in polymer science[J]. Polymer chemistry, 2016, 7(23): 3812-3826. [53]CASTRO V, RODRíGUEZ H, ALBERICIO F. CuAAC:An efficient click chemistry reaction on solid phase[J].Acs combinatorial science, 2016, 18(1): 1-14. [54]WANG X, HUANG B, LIU X, et al. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries[J]. Drug discovery today, 2016, 21(1):118-132. [55]ALONSO F, MOGLIE Y, RADIVOY G. Copper nanoparticles in click chemistry[J]. Accounts of chemical research, 2015, 48(9): 2516-2528. [56]BROOKS K, YATVIN J, MCNITT C D, et al. Multifunctional surface manipulation using orthogonal click chemistry[J]. Langmuir the ACS journal of surfaces & colloids,2016, 32(26): 6600-6605.